
Combinatorics, 2015 Fall, USTC

Week 4, October 8, 2016

Random Walk
Consider a real axis with integer points (0,±1,±2,±3, · · · ) marked. A

frog leaps among the integer points according to the following rules:

(1). At beginning, it sits at 1.

(2). In each coming step, the frog leaps either by distance 2 to the right

(from i to i + 2), or by distance 1 to the left (from i to i− 1), each is

randomly chosen with probability 1
2
independently of each other.

Problem. What is the probability that the frog can reach “0"?

In each step, we use “+" or “−" to indicate the choice of the frog that is

either to leap right or leap left. Then the probability space Ω can be viewed

as the set of infinite vectors, where each entry is in {+,−}.

Let A be the event that the frog reaches 0. Let Ai be the event that the

frog reaches 0 at the ith step for the first time. So A = ∪+∞i=1Ai is a disjoint

union. So P (A) =
∑+∞

i=1 P (Ai).

To compute P (Ai), we can define ai to be the number of trajectories (or

vectors) of the first i steps such that the frog starts at 1 and reaches 0 at the

ith step for the first time. So

P (Ai) =
ai
2i
.
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Then,

P (A) =
+∞∑
i=1

ai
2i
.

Let f(x) =
∑+∞

i=0 aix
i be the generating function of {ai}i≥0, where a0 := 0.

Thus,

P (A) =
+∞∑
i=1

ai
2i

= f

(
1

2

)
.

We then turn to find the expression of f(x).

Let bi be the number of trajectories of the first i steps such that the frog

starts at “2" and reaches “0" at the ith step for the first time.

Let ci be the number of trajectories of the first i steps such that the frog

starts at “3" and reaches “0" at the ith step for the first time.

We express bi in terms of {aj}j≥1. Since the frog only can leap to left by

distance 1, if the frog can successfully jump from “i" to “0" in i steps, then

this frog must reach “1" first. Let j be the number of steps by which the frog

reaches “1" for the first time. So there are aj trajectories from “2" to “1" at

the jth step for the first time.in the remaining i− j steps the frog must jump

from “1" to “0" and reach “0" at the coming (i− j)th step for the first time,

so there are ai−j trajectories that the frog can finish in exactly i − j steps.

In total,

bi =
i−1∑
j=1

ajai−j.

As aj = 0,

bi =
i∑

j=0

ajai−j.
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⇒
∑
i≥0

bix
i = (

∑
i≥0

aix
i)2 = f 2(x).

Similarly, if we count the number ci of trajectories from 3 to 0, we can

obtain that

ci =
i∑

j=0

ajbi−j.

⇒
∑
i≥0

cix
i =

(∑
i≥0

bix
i

)(∑
i≥0

aix
i

)
= f 3(x).

Let us consider ai from another point of view. After the first step, either

the frog reaches “0" directly (if it leaps to left, so a1 = 1), or it leaps to “3".

In the latter case, the frog needs to jump from “3" to “0" using i− 1 steps.

Thus for i ≥ 2, ai = ci−1.

Thus,

f(x) =
+∞∑
i=0

aix
i = x +

∑
i≥2

aix
i = x +

∑
i≥2

ci−1x
i

= x + x

(
+∞∑
j=0

cjx
j

)
= x + x · f 3(x).

Recall P (A) = f(1/2) =: a. Then a = 1
2

+ a3

2
, i.e., (a−1)(a2 +a−1) = 0.

⇒ a = 1,

√
5− 1

2
or
−
√

5− 1

1
.

Since P (A) ∈ [0, 1], we see P (A) = 1 or
√
5−1
2

.

Note that f(x) = x+ xf 3(x). Consider the inverse function of f(x), that

is, g(x) := x
1+x3 . Consider the figure of g(x). We find that g(x) is increasing

around
√
5−1
2

but decreasing around 1. Since f(x) =
∑

aix
i is increasing,

g(x) also increases. Thus it doesn’t make sense for g(x) being around x = 1.
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This explains that P (A) =
√
5−1
2

.

Exponential Generating Function
Let N,Ne and No be the sets of nonnegative integers, nonnegative even

integers and nonnegative odd integers, respectively.

Recall:

• The ordinary generating function of the sequence {an}n≥0 is the power

series f(x) =
∑

n≥0 anx
n.

• Let fj(x) :=
∑

i∈Ij x
i for j = 1, 2, ..., n and ak be the number of integer

solutions to i1 + i2 + ... + in = k, where ij ∈ Ij, that is

ak :=
∑

i1+i2+...+in=k for ij∈Ij

1.

Then
∏n

j=1 fj(x) is the ordinary generating function of {ak}.

Problem (1). Let Sn be the number of selections of n letters chosen from

an unlimited supply of a’s, b’s and c’s such that both of the numbers of a’s

and b’s are even.

We can write Sn as

Sn =
∑

e1+e2+e3=n, e1,e2∈Ne, e3∈N

1.

Using the previous fact, we see that Sn = [xn]f , where

f(x) =

(∑
i∈Ne

xi

)2(∑
j∈N

xj

)
=

(
1

1− x2

)2

· 1

1− x
.
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Problem (2). Let Tn be the number of arrangements (or words) of n letters

chosen from an unlimited supply of a’s, b’s and c’s such that both of the

numbers of a’s and b’s are even. What is the value of Tn?

To solve this, we define a new kind of generating functions.

Definition 1. The exponential generating function for the sequence {an}n≥0
is the power series

f(x) =
∞∑
n=0

an ·
xn

n!
.

Fact: If we have n letters including x a’s, y b’s and z c’s (i.e. x+ y + z = n),

then we can form n!
x!y!z!

distinct words using them.

Therefore, a selection (say x a’s, y b’s and z c’s) can contribute n!
x!y!z!

arrangements to Tn. This implies that

Tn =
∑

e1+e2+e3=n, e1,e2∈Ne, e3∈N

n!

e1!e2!e3!
.

Similar to define the above f(x) for Sn, we define the following for Tn.

Let

g(x) :=

(∑
i∈Ne

xi

i!

)2(∑
j∈N

xj

j!

)
.

Claim:

[xn]g =
Tn

n!
.

Proof. To see this, we expand g(x). Then the term xn in g(x) becomes

∑
e1+e2+e3=n,

e1,e2∈Ne, e3∈N

xe1

e1!
· x

e2

e2!
· x

e3

e3!
=

 ∑
e1+e2+e3=n,

e1,e2∈Ne, e3∈N

n!

e1!e2!e3!

 xn

n!
= Tn ·

xn

n!
.
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So [xn]g = Tn

n!
, i.e., g(x) is the exponential generating function of {Tn}.

Recall: Two Taylor series: ex =
∑

j≥0
xj

j!
and e−x =

∑
j≥0

(−1)j
j!

xj imply that

ex + e−x

2
=
∑
j∈Ne

xj

j!
and

ex − e−x

2
=
∑
j∈No

xj

j!
.

Using the previous fact, we get

g(x) =

(
ex + e−x

2

)2

· ex =
e3x + 2ex + e−x

4
=
∑
n≥0

(
3n + 2 + (−1)n

4

)
· x

n

n!
.

Therefore, we get that

Tn =
3n + 2 + (−1)n

4
.

As we see, ordinary generation functions can be used to find the number

of selections; while exponential generation functions can be used to find the

number of arrangements or some combinatorial objects involving ordering.

Exercise (1). Find the number an of ways to send n students to 4 different

classrooms (say R1, R2, R3, R4) such that each room has at least 1 students.

Solution.

an =
∑

i1 + i2 + i3 + i4 = n, ij ≥ 1
n!

i1!i2!i3!i4!

⇒ f(x) =
+∞∑
n=0

an
n!

xn =

(
+∞∑
i=1

xi

i!

)4

= (ex − 1)4 ⇒ an = · · · .

Fact 1: Given k subsets I1, ..., Ik of non-negative integers, let fj(x) =
∑

i∈Ij
xi

i!
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and bn =
∑

i1+···ik=n, ij∈Ij
n!

i1!···ik!
. Then

∏k
j=1 fj is the exponential generation

function for {bn}n≥0.

Recall the other fact that ordinary generation function. Given I1, ..., Ik,

let fj =
∑

i∈Ij x
i and an =

∑
i1+···ik=n, ij∈Ij 1. Then

∏k
j=1 fj is the ordinary

generation function for {an}n≥0.

Next, we can extend Fact 1.

Fact 2: Given polynomial f1, ..., fk. Say fj(x) =
∑∞

n=0
a
(j)
n

n!
xn, let f(x) =∏k

j=1 fj(x). Then f(x) =
∑+∞

n=0
An

n!
xn if and only if

An =
∑

i1+···+ik=n, ij≥0

n!

i1! · · · ik!

(
k∏

j=1

a
(j)
i

)
.

Proof.

[xn]f =
∑

i1+···+ik=n, ij≥0

(
n∏

j=1

[x]ijfj

)
.

Exercise (2). Let an be the number of arrangements of some type A for a

group of n people, and let bn be the number of arrangements of some type

B for a group of n people.

Define a new arrangement of n people called type C, as follows:

• Divide the n person into 2 groups (say 1st and 2nd).

• Then arrange the first group by an arrangement of type A, and arrange

the second group by arrangement of type B.

Let cn := # arrangements of type C. Let A(x), B(x), C(x) be the ex-

ponential generation function for {an}, {bn}, {cn} respectively. Prove that
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C(x) = A(x)B(x).

Proof.

Cn =
∑
i+j=n

n!

i!j!
aibj

⇒ By Fact 2, C(x) = A(x)B(x).

Basic of Graphs

Definition 2. A graph G = (V,E) consists of a finite set V of vertices (V

is called the vertex set) and a set E of edges (E is called the edge set) such

that

E ⊆ V × V = {(u, v) : u ∈ V, v ∈ V },

where such (u, v)s are unordered pairs.
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