Combinatorics, 2015 Fall, USTC

Week 4, October 8, 2016

Random Walk

Consider a real axis with integer points $(0, \pm 1, \pm 2, \pm 3, \cdots)$ marked. A frog leaps among the integer points according to the following rules:
(1). At beginning, it sits at 1 .
(2). In each coming step, the frog leaps either by distance 2 to the right (from i to $i+2$), or by distance 1 to the left (from i to $i-1$), each is randomly chosen with probability $\frac{1}{2}$ independently of each other.

Problem. What is the probability that the frog can reach " 0 "?
In each step, we use " + " or " - " to indicate the choice of the frog that is either to leap right or leap left. Then the probability space Ω can be viewed as the set of infinite vectors, where each entry is in $\{+,-\}$.

Let A be the event that the frog reaches 0 . Let A_{i} be the event that the frog reaches 0 at the $i^{\text {th }}$ step for the first time. So $A=\cup_{i=1}^{+\infty} A_{i}$ is a disjoint union. So $P(A)=\sum_{i=1}^{+\infty} P\left(A_{i}\right)$.

To compute $P\left(A_{i}\right)$, we can define a_{i} to be the number of trajectories (or vectors) of the first i steps such that the frog starts at 1 and reaches 0 at the $i^{\text {th }}$ step for the first time. So

$$
P\left(A_{i}\right)=\frac{a_{i}}{2^{i}} .
$$

Then,

$$
P(A)=\sum_{i=1}^{+\infty} \frac{a_{i}}{2^{i}}
$$

Let $f(x)=\sum_{i=0}^{+\infty} a_{i} x^{i}$ be the generating function of $\left\{a_{i}\right\}_{i \geq 0}$, where $a_{0}:=0$. Thus,

$$
P(A)=\sum_{i=1}^{+\infty} \frac{a_{i}}{2^{i}}=f\left(\frac{1}{2}\right) .
$$

We then turn to find the expression of $f(x)$.
Let b_{i} be the number of trajectories of the first i steps such that the frog starts at " 2 " and reaches " 0 " at the $i^{\text {th }}$ step for the first time.

Let c_{i} be the number of trajectories of the first i steps such that the frog starts at " 3 " and reaches " 0 " at the $i^{\text {th }}$ step for the first time.

We express b_{i} in terms of $\left\{a_{j}\right\}_{j \geq 1}$. Since the frog only can leap to left by distance 1 , if the frog can successfully jump from " i " to " 0 " in i steps, then this frog must reach " 1 " first. Let j be the number of steps by which the frog reaches " 1 " for the first time. So there are a_{j} trajectories from " 2 " to " 1 " at the $j^{\text {th }}$ step for the first time.in the remaining $i-j$ steps the frog must jump from " 1 " to " 0 " and reach " 0 " at the coming $(i-j)^{t h}$ step for the first time, so there are a_{i-j} trajectories that the frog can finish in exactly $i-j$ steps. In total,

$$
b_{i}=\sum_{j=1}^{i-1} a_{j} a_{i-j} .
$$

As $a_{j}=0$,

$$
b_{i}=\sum_{j=0}^{i} a_{j} a_{i-j} .
$$

$$
\Rightarrow \sum_{i \geq 0} b_{i} x^{i}=\left(\sum_{i \geq 0} a_{i} x^{i}\right)^{2}=f^{2}(x) .
$$

Similarly, if we count the number c_{i} of trajectories from 3 to 0 , we can obtain that

$$
\begin{gathered}
c_{i}=\sum_{j=0}^{i} a_{j} b_{i-j} \\
\Rightarrow \sum_{i \geq 0} c_{i} x^{i}=\left(\sum_{i \geq 0} b_{i} x^{i}\right)\left(\sum_{i \geq 0} a_{i} x^{i}\right)=f^{3}(x)
\end{gathered}
$$

Let us consider a_{i} from another point of view. After the first step, either the frog reaches " 0 " directly (if it leaps to left, so $a_{1}=1$), or it leaps to " 3 ". In the latter case, the frog needs to jump from " 3 " to " 0 " using $i-1$ steps. Thus for $i \geq 2, a_{i}=c_{i-1}$.

Thus,

$$
\begin{aligned}
f(x) & =\sum_{i=0}^{+\infty} a_{i} x^{i}=x+\sum_{i \geq 2} a_{i} x^{i}=x+\sum_{i \geq 2} c_{i-1} x^{i} \\
& =x+x\left(\sum_{j=0}^{+\infty} c_{j} x^{j}\right)=x+x \cdot f^{3}(x) .
\end{aligned}
$$

Recall $P(A)=f(1 / 2)=: a$. Then $a=\frac{1}{2}+\frac{a^{3}}{2}$, i.e., $(a-1)\left(a^{2}+a-1\right)=0$.

$$
\Rightarrow a=1, \frac{\sqrt{5}-1}{2} \text { or } \frac{-\sqrt{5}-1}{1} .
$$

Since $P(A) \in[0,1]$, we see $P(A)=1$ or $\frac{\sqrt{5}-1}{2}$.
Note that $f(x)=x+x f^{3}(x)$. Consider the inverse function of $f(x)$, that is, $g(x):=\frac{x}{1+x^{3}}$. Consider the figure of $g(x)$. We find that $g(x)$ is increasing around $\frac{\sqrt{5}-1}{2}$ but decreasing around 1. Since $f(x)=\sum a_{i} x^{i}$ is increasing, $g(x)$ also increases. Thus it doesn't make sense for $g(x)$ being around $x=1$.

This explains that $P(A)=\frac{\sqrt{5}-1}{2}$.

Exponential Generating Function

Let $\mathbb{N}, \mathbb{N}_{e}$ and \mathbb{N}_{o} be the sets of nonnegative integers, nonnegative even integers and nonnegative odd integers, respectively.

Recall:

- The ordinary generating function of the sequence $\left\{a_{n}\right\}_{n \geq 0}$ is the power series $f(x)=\sum_{n \geq 0} a_{n} x^{n}$.
- Let $f_{j}(x):=\sum_{i \in I_{j}} x^{i}$ for $j=1,2, \ldots, n$ and a_{k} be the number of integer solutions to $i_{1}+i_{2}+\ldots+i_{n}=k$, where $i_{j} \in I_{j}$, that is

$$
a_{k}:=\sum_{i_{1}+i_{2}+\ldots+i_{n}=k \text { for } i_{j} \in I_{j}} 1 .
$$

Then $\prod_{j=1}^{n} f_{j}(x)$ is the ordinary generating function of $\left\{a_{k}\right\}$.
Problem (1). Let S_{n} be the number of selections of n letters chosen from an unlimited supply of a 's, b 's and c 's such that both of the numbers of a 's and b 's are even.

We can write S_{n} as

$$
S_{n}=\sum_{e_{1}+e_{2}+e_{3}=n, e_{1}, e_{2} \in \mathbb{N}_{e}, e_{3} \in \mathbb{N}} 1 .
$$

Using the previous fact, we see that $S_{n}=\left[x^{n}\right] f$, where

$$
f(x)=\left(\sum_{i \in \mathbb{N}_{e}} x^{i}\right)^{2}\left(\sum_{j \in \mathbb{N}} x^{j}\right)=\left(\frac{1}{1-x^{2}}\right)^{2} \cdot \frac{1}{1-x} .
$$

Problem (2). Let T_{n} be the number of arrangements (or words) of n letters chosen from an unlimited supply of a 's, b 's and c 's such that both of the numbers of a 's and b 's are even. What is the value of T_{n} ?

To solve this, we define a new kind of generating functions.
Definition 1. The exponential generating function for the sequence $\left\{a_{n}\right\}_{n \geq 0}$ is the power series

$$
f(x)=\sum_{n=0}^{\infty} a_{n} \cdot \frac{x^{n}}{n!}
$$

Fact: If we have n letters including $x a$'s, y b's and z c's (i.e. $x+y+z=n$), then we can form $\frac{n!}{x!y!z!}$ distinct words using them.

Therefore, a selection (say x a's, y b's and $z c^{\prime}$ s) can contribute $\frac{n!}{x!y!z!}$ arrangements to T_{n}. This implies that

$$
T_{n}=\sum_{e_{1}+e_{2}+e_{3}=n, e_{1}, e_{2} \in \mathbb{N}_{e}, e_{3} \in \mathbb{N}} \frac{n!}{e_{1}!e_{2}!e_{3}!} .
$$

Similar to define the above $f(x)$ for S_{n}, we define the following for T_{n}. Let

$$
g(x):=\left(\sum_{i \in \mathbb{N}_{e}} \frac{x^{i}}{i!}\right)^{2}\left(\sum_{j \in \mathbb{N}} \frac{x^{j}}{j!}\right) .
$$

Claim:

$$
\left[x^{n}\right] g=\frac{T_{n}}{n!} .
$$

Proof. To see this, we expand $g(x)$. Then the term x^{n} in $g(x)$ becomes

$$
\sum_{\substack{e_{1}+e_{2}+e_{3}=n, e_{1}, e_{2} \in \mathbb{N}_{e}, e_{3} \in \mathbb{N}}} \frac{x^{e_{1}}}{e_{1}!} \cdot \frac{x^{e_{2}}}{e_{2}!} \cdot \frac{x^{e_{3}}}{e_{3}!}=\left(\sum_{\substack{e_{1}+e_{2}+e_{3}=n, e_{1}, e_{2} \in \mathbb{N}_{e}, e_{3} \in \mathbb{N}}} \frac{n!}{e_{1}!e_{2}!e_{3}!}\right) \frac{x^{n}}{n!}=T_{n} \cdot \frac{x^{n}}{n!}
$$

So $\left[x^{n}\right] g=\frac{T_{n}}{n!}$, i.e., $g(x)$ is the exponential generating function of $\left\{T_{n}\right\}$.
Recall: Two Taylor series: $e^{x}=\sum_{j \geq 0} \frac{x^{j}}{j!}$ and $e^{-x}=\sum_{j \geq 0} \frac{(-1)^{j}}{j!} x^{j}$ imply that

$$
\frac{e^{x}+e^{-x}}{2}=\sum_{j \in \mathbb{N}_{e}} \frac{x^{j}}{j!} \quad \text { and } \quad \frac{e^{x}-e^{-x}}{2}=\sum_{j \in \mathbb{N}_{o}} \frac{x^{j}}{j!}
$$

Using the previous fact, we get

$$
g(x)=\left(\frac{e^{x}+e^{-x}}{2}\right)^{2} \cdot e^{x}=\frac{e^{3 x}+2 e^{x}+e^{-x}}{4}=\sum_{n \geq 0}\left(\frac{3^{n}+2+(-1)^{n}}{4}\right) \cdot \frac{x^{n}}{n!}
$$

Therefore, we get that

$$
T_{n}=\frac{3^{n}+2+(-1)^{n}}{4}
$$

As we see, ordinary generation functions can be used to find the number of selections; while exponential generation functions can be used to find the number of arrangements or some combinatorial objects involving ordering.

Exercise (1). Find the number a_{n} of ways to send n students to 4 different classrooms (say $R_{1}, R_{2}, R_{3}, R_{4}$) such that each room has at least 1 students. Solution.

$$
\begin{gathered}
a_{n}=\sum i_{1}+i_{2}+i_{3}+i_{4}=n, i_{j} \geq 1 \frac{n!}{i_{1}!i_{2}!i_{3}!i_{4}!} \\
\Rightarrow f(x)=\sum_{n=0}^{+\infty} \frac{a_{n}}{n!} x^{n}=\left(\sum_{i=1}^{+\infty} \frac{x^{i}}{i!}\right)^{4}=\left(e^{x}-1\right)^{4} \Rightarrow a_{n}=\cdots .
\end{gathered}
$$

Fact 1: Given k subsets I_{1}, \ldots, I_{k} of non-negative integers, let $f_{j}(x)=\sum_{i \in I_{j}} \frac{x^{i}}{i!}$
and $b_{n}=\sum_{i_{1}+\cdots i_{k}=n, i_{j} \in I_{j}} \frac{n!}{i_{1}!\cdots i_{k}!}$. Then $\prod_{j=1}^{k} f_{j}$ is the exponential generation function for $\left\{b_{n}\right\}_{n \geq 0}$.

Recall the other fact that ordinary generation function. Given I_{1}, \ldots, I_{k}, let $f_{j}=\sum_{i \in I_{j}} x^{i}$ and $a_{n}=\sum_{i_{1}+\cdots i_{k}=n, i_{j} \in I_{j}}$. Then $\prod_{j=1}^{k} f_{j}$ is the ordinary generation function for $\left\{a_{n}\right\}_{n \geq 0}$.

Next, we can extend Fact 1.
Fact 2: Given polynomial f_{1}, \ldots, f_{k}. Say $f_{j}(x)=\sum_{n=0}^{\infty} \frac{a_{n}^{(j)}}{n!} x^{n}$, let $f(x)=$ $\prod_{j=1}^{k} f_{j}(x)$. Then $f(x)=\sum_{n=0}^{+\infty} \frac{A_{n}}{n!} x^{n}$ if and only if

$$
A_{n}=\sum_{i_{1}+\cdots+i_{k}=n, i_{j} \geq 0} \frac{n!}{i_{1}!\cdots i_{k}!}\left(\prod_{j=1}^{k} a_{i}^{(j)}\right)
$$

Proof.

$$
\left[x^{n}\right] f=\sum_{i_{1}+\cdots+i_{k}=n, i_{j} \geq 0}\left(\prod_{j=1}^{n}[x]^{i_{j}} f_{j}\right) .
$$

Exercise (2). Let a_{n} be the number of arrangements of some type A for a group of n people, and let b_{n} be the number of arrangements of some type B for a group of n people.

Define a new arrangement of n people called type C, as follows:

- Divide the n person into 2 groups (say $1^{\text {st }}$ and $2^{\text {nd }}$).
- Then arrange the first group by an arrangement of type A, and arrange the second group by arrangement of type B.

Let $c_{n}:=\#$ arrangements of type C. Let $A(x), B(x), C(x)$ be the exponential generation function for $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ respectively. Prove that
$C(x)=A(x) B(x)$.
Proof.

$$
C_{n}=\sum_{i+j=n} \frac{n!}{i!j!} a_{i} b_{j}
$$

\Rightarrow By Fact $2, C(x)=A(x) B(x)$.

Basic of Graphs

Definition 2. A graph $G=(V, E)$ consists of a finite set V of vertices (V is called the vertex set) and a set E of edges (E is called the edge set) such that

$$
E \subseteq V \times V=\{(u, v): u \in V, v \in V\}
$$

where such $(u, v) \mathrm{s}$ are unordered pairs.

